\(\int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx\) [146]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 182 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx=-\frac {4 c (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}+\frac {6 c (g \cos (e+f x))^{5/2}}{5 a f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {6 c g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-4/5*c*(g*cos(f*x+e))^(5/2)/f/g/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(1/2)+6/5*c*(g*cos(f*x+e))^(5/2)/a/f/g
/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2)+6/5*c*g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*Ellipti
cE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/a^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x
+e))^(1/2)

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {2929, 2931, 2921, 2721, 2719} \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx=\frac {6 c g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{5 a^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {6 c (g \cos (e+f x))^{5/2}}{5 a f g (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {4 c (g \cos (e+f x))^{5/2}}{5 f g (a \sin (e+f x)+a)^{5/2} \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[((g*Cos[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^(5/2),x]

[Out]

(-4*c*(g*Cos[e + f*x])^(5/2))/(5*f*g*(a + a*Sin[e + f*x])^(5/2)*Sqrt[c - c*Sin[e + f*x]]) + (6*c*(g*Cos[e + f*
x])^(5/2))/(5*a*f*g*(a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]) + (6*c*g*Sqrt[Cos[e + f*x]]*Sqrt[g*Co
s[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(5*a^2*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2921

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[g*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2929

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
 + f*x])^n/(f*g*(2*n + p + 1))), x] - Dist[b*((2*m + p - 1)/(d*(2*n + p + 1))), Int[(g*Cos[e + f*x])^p*(a + b*
Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c +
a*d, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 2931

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^
n/(a*f*g*(2*m + p + 1))), x] + Dist[(m + n + p + 1)/(a*(2*m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f
*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && E
qQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] &&  !LtQ[m, n, -1] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {4 c (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}-\frac {(3 c) \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx}{5 a} \\ & = -\frac {4 c (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}+\frac {6 c (g \cos (e+f x))^{5/2}}{5 a f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {(3 c) \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{5 a^2} \\ & = -\frac {4 c (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}+\frac {6 c (g \cos (e+f x))^{5/2}}{5 a f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {(3 c g \cos (e+f x)) \int \sqrt {g \cos (e+f x)} \, dx}{5 a^2 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {4 c (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}+\frac {6 c (g \cos (e+f x))^{5/2}}{5 a f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {\left (3 c g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{5 a^2 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {4 c (g \cos (e+f x))^{5/2}}{5 f g (a+a \sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}+\frac {6 c (g \cos (e+f x))^{5/2}}{5 a f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {6 c g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.48 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.26 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx=\frac {4 i g \sqrt {e^{-i (e+f x)} \left (1+e^{2 i (e+f x)}\right ) g} \left (\left (5-4 i e^{i (e+f x)}-3 e^{2 i (e+f x)}\right ) \sqrt {1+e^{2 i (e+f x)}}+e^{i (e+f x)} \left (i+e^{i (e+f x)}\right )^3 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (e+f x)}\right )\right ) \sqrt {c-c \sin (e+f x)}}{5 a \left (-i+e^{i (e+f x)}\right ) \left (-i a e^{-i (e+f x)} \left (i+e^{i (e+f x)}\right )^2\right )^{3/2} \sqrt {1+e^{2 i (e+f x)}} f} \]

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^(5/2),x]

[Out]

(((4*I)/5)*g*Sqrt[((1 + E^((2*I)*(e + f*x)))*g)/E^(I*(e + f*x))]*((5 - (4*I)*E^(I*(e + f*x)) - 3*E^((2*I)*(e +
 f*x)))*Sqrt[1 + E^((2*I)*(e + f*x))] + E^(I*(e + f*x))*(I + E^(I*(e + f*x)))^3*Hypergeometric2F1[1/2, 3/4, 7/
4, -E^((2*I)*(e + f*x))])*Sqrt[c - c*Sin[e + f*x]])/(a*(-I + E^(I*(e + f*x)))*(((-I)*a*(I + E^(I*(e + f*x)))^2
)/E^(I*(e + f*x)))^(3/2)*Sqrt[1 + E^((2*I)*(e + f*x))]*f)

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 0.95 (sec) , antiderivative size = 1492, normalized size of antiderivative = 8.20

method result size
default \(\text {Expression too large to display}\) \(1492\)

[In]

int((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/10/f*(-c*(sin(f*x+e)-1))^(1/2)*(g*cos(f*x+e))^(1/2)*g/(a*(1+sin(f*x+e)))^(1/2)/(-cos(f*x+e)/(1+cos(f*x+e))^
2)^(3/2)/(1+cos(f*x+e))^3/a^2*(24*I*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*Ell
ipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)-12*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(
f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*cos(f*x+e)*sin(f*x+e)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/
2)+24*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(-co
s(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*sin(f*x+e)-12*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*El
lipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*tan(f*x+e)+12*I*(1/(1+cos(f*x+e)))^(
1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(
1/2)*tan(f*x+e)-24*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*
x+e)),I)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*sin(f*x+e)+12*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+
e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*cos(f*x+e)*sin(f*x+e)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-1
2*I*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*(1/(1+cos(f*x+e)))^(1/2)*EllipticF(
I*(csc(f*x+e)-cot(f*x+e)),I)*sec(f*x+e)+12*I*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^
(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*sec(f*x+e)+12*I*cos(f*x+e)*(-cos(f*x+e)/
(1+cos(f*x+e))^2)^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x
+e)))^(1/2)-24*I*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*(1/(1+cos(f*x+e)))^(1/
2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)-12*I*cos(f*x+e)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*(cos(f*x+e)/(1+
cos(f*x+e)))^(1/2)*(1/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)+5*ln(2*(2*(-cos(f*x+e)/(1+c
os(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*sin(f*x+e)
-5*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/
(1+cos(f*x+e)))*sin(f*x+e)+12*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+20*(-cos(f*x+e)/(1+cos(f*x+e))^2
)^(1/2)*sin(f*x+e)+5*ln(2*(2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^
(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))-5*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+
cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))+4*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)+8*(-cos(f*x+e)/(1+co
s(f*x+e))^2)^(1/2)*tan(f*x+e)-8*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*sec(f*x+e))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.15 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx=-\frac {2 \, \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (3 \, g \sin \left (f x + e\right ) + g\right )} - 3 \, {\left (-i \, \sqrt {2} g \cos \left (f x + e\right )^{2} + 2 i \, \sqrt {2} g \sin \left (f x + e\right ) + 2 i \, \sqrt {2} g\right )} \sqrt {a c g} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) - 3 \, {\left (i \, \sqrt {2} g \cos \left (f x + e\right )^{2} - 2 i \, \sqrt {2} g \sin \left (f x + e\right ) - 2 i \, \sqrt {2} g\right )} \sqrt {a c g} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{5 \, {\left (a^{3} f \cos \left (f x + e\right )^{2} - 2 \, a^{3} f \sin \left (f x + e\right ) - 2 \, a^{3} f\right )}} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

-1/5*(2*sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*(3*g*sin(f*x + e) + g) - 3*(-I
*sqrt(2)*g*cos(f*x + e)^2 + 2*I*sqrt(2)*g*sin(f*x + e) + 2*I*sqrt(2)*g)*sqrt(a*c*g)*weierstrassZeta(-4, 0, wei
erstrassPInverse(-4, 0, cos(f*x + e) + I*sin(f*x + e))) - 3*(I*sqrt(2)*g*cos(f*x + e)^2 - 2*I*sqrt(2)*g*sin(f*
x + e) - 2*I*sqrt(2)*g)*sqrt(a*c*g)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x
 + e))))/(a^3*f*cos(f*x + e)^2 - 2*a^3*f*sin(f*x + e) - 2*a^3*f)

Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))**(3/2)*(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} \sqrt {-c \sin \left (f x + e\right ) + c}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*sqrt(-c*sin(f*x + e) + c)/(a*sin(f*x + e) + a)^(5/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

[In]

int(((g*cos(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(5/2),x)

[Out]

int(((g*cos(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(5/2), x)